> @ "bjbjFF 3J,,
!!!8H!<!\hh!!!!!"""$ЋR"
#""##
!!"r&r&r&#!!r&#r&r&J|\!!0x
]!${~BÅ$80h~,%
4>"L#6r&I#,u#k"""
$!&X! Year: 5 Class: 5M &5S Block: D1 Caluclating, measuring and and understanding shape Date::12th -17th Novemeber 2007
Cross Curricluar:
Objective: L1: starter: Recall quickly multiplication facts x10 10 an then use them to multiply pairs of multiples of 10 and 10 0, dervive quickly corresponding division facts
Main:
Objective: L2: starter:
Main:
Objective L3: Starter:
Main:
Objective L4: starter:
Main:
Objective L5 Satrer ,
Main.
Lesson numberMental/OralMain Lesson Objective & ActivityReview (plenary)
Starters
Speaking & ListeningResources and ICTKey Questions, teaching points,VAK
Inclusion
(
circles, triangles
(
rectangles, diamonds
(
SquaresSteps to Success
(I can/3 WILT?)
Review/Key Questions
4
Teach.
Rehearse: Play Division lotto as in Block A , unit 3, lesson 5. Shuffle a pack of several sets of number cards 2-10 and give six cards to each group of children. Call out a division fact question (such as 24 / 6). Any group holding the answer turns that card face down. The first group to turn all its cards face down and shout Lotto wins.
Continuing from lesson 9, explain to the children that we suspect that their may be a relationship between the number of sides and the number of lines of symmetry but it is unlikely that enough samples were tested in one lesson.
Ask the children to continue the investigation, encouraging them to fill the gaps in the recording table from lesson 9. Ask questions such as Do all triangles or shapes with one right angle have the same number of lines of symmetry?
Continue the recording chart and ask the children to write a statement about the relationship between the number of sides and the number of lines of symmetry in regular shapes: Ask: Are there any other patterns we noticed for example, in triangles, or all shapes with one right angle?
Distribute strips of paper to the groups of children and ask them to write a statement about their observations. Display these statements with the recording chart.
.
.
5
Teach & practise
Rehearse: Repeat the starter from lesson 6. Then reverse the activity by asking the children (in pairs) to show you two factors of a given multiple, using their number fans. For example, if you say 42, the children could hold up 7 and 6 on their number fans.
Whole class: display a variety of solid shapes: square-based pyramid, triangular based pyramid, cuboid, prism and so on. Spend some time identifying and counting faces, vertices and edges. Ask the children whether any of these shapes would have an easily identifiable net. Why? (For example, the net for a square-based pyramid would contain a square and four triangles).
Group work: Ask the children to investigate the shapes and try to draw nets for them without opening up the shapes, passing each shape from group to group. Ask them to complete the Match the nets activity sheet, working individually to make the nets and match the correct nets to the solids.
Say: Looking at our results, are there any generalisations we can make? For example, do shapes with more sides have a greater number of possible nets? Share and record on the board the nets discovered by the children. Discuss the reflections and rotations of nets that the children have found. Draw a net of a cuboid and ask: Can someone visualise and draw this net rotated through ninety degreesthrough one-eighty? Draw an incomplete net of a cube and ask: What needs to be added to this to make it an accurate net of a cube? Can you draw it?.
Rehearse: Play a multiplication challenge game. Arrange the children into a circle. One child starts by calling out another childs name and multiplication fact question (such as 7 times 6). That child must reply quickly and correctly or sit down. If they answer correctly, they can call another name and multiplication question. The winners are those still standing after approximately five minutes of playing the game.
Ask the children to look again at the Match the nets activity page from lesson 7. Explain that you want them to continue with their visualisations, trying to identify which face would represent the top and bottom of the cuboids when the net is open. Less confident learners may have to actually build the nets to find the base and the lid, whilst more confident learners may be able to draw other nets of 3D shapes, identifying the top and bottom faces.
Look at the shapes created and discuss ways in which individuals are able to visualise different orientations.
Refine and rehearse: Play a divisibility game. Split the class into four groups and give each group a number card: 2, 4, 5 or 10. Call out numbers that are divisible by at least one of those numbers. The group that has a correct divisibility card should stand up. Discuss why more than one group stands up for certain numbers. Call out 16, 15, 30, 40, 18, 35, 20, 12, 100, 50 and 120. At the end, find out whether anyone remembers which numbers everyone stood up for.
Whole class: establish what is meant by reflective symmetry. Demonstrate by folding card shapes along the lines of symmetry. Ask: how many lines of symmetry has an equilateral triangle or a square? Why does a square have diagonal lines of symmetry when a rectangle does not?
Using the shapes from the general resource sheet Shapes, revise reflective symmetry of regular polygons such as equilateral triangles and squares. Revise symmetry of a rectangle and discuss why it only has two lines of symmetry instead of four, as in a square. (Two longer sides, not a regular shape). Demonstrate how lines of symmetry can be checked using a mirror or tracing paper. Remind the children that a reflected shape flips over on the opposite side of a mirror line.
Independent work: Ask the children to investigate the lines of a reflective symmetry of a variety of polygons. They could draw around shapes and then find the lines of symmetry using a mirror.
Review: Begin a results table on the board or on a large sheet of paper for display purposes.
Look at easy teach table.
Ask: Can anybody spot a pattern? Can anyone predict how many lines of symmetry a 20 sided regular polygon might have? Ask: is the same true for irregular polygons? ..
Created by Maya Sisodia
#ceikH J |pdXdOCh$h
hl5CJaJhI5CJaJh$h
hG5CJaJh$h
h."45CJaJh$h
hA5CJaJh."45CJaJh$h
hE_5CJaJh$h
h_5CJaJh$h
hB5CJaJh$h
hN5CJaJh$h
h/_CJaJhAhNCJaJh_ySh_ySCJH*aJh_ySCJaJhAhACJaJhAhBCJaJh$h
hNCJaJK \ x (
)
C
>R>R>R> >R>R>R>R>R>R>R>R>R>R>R*$d%d&d'dNOPQ]gdA*$d%d&d'dNOPQ]gd+ ]^gd/_
f@;]`;gd/_""J K S T [ \ k l u v '
(
)
3
5
B
V
n
u
v
w
˿˿߿wnene\h$h
5CJaJh5CJaJhy5CJaJh$h
hA5CJaJh+5CJaJhA5CJaJh$h
h+5CJaJh$h
h7CJaJh$h
h]CJaJhACJaJh$h
hG5CJaJh$h
h55CJaJhfCJaJh$h
hGCJaJh$h
hlCJaJh$h
h."4CJaJ$C
v
w
>R>R>R>R>R> >Rv:
v:v:v:v:$$Ifa$gd^=l$If$If ]^*$d%d&d'dNOPQ]gdy*$d%d&d'dNOPQ]gd+
45GeivwxǾǵǥєǇyobyo jh
'hN5CJh
'hVm5CJ
hVm5CJ
hN5CJ jh
'hN5CJh
'h?5CJh
'h_h
'hNh
'h1wCJh
'hE_CJh
'hNCJh
'hN5CJh
'hE_5CJh$h
hE_5CJaJh$h
h5CJaJh$h
h55CJaJ! 5Ou:I@v:@v::v::v:$If $$Ifa$$Ifkd$$Ifl4rr7-2[<`fXy 0O4
laf45GjkuvxO
v:v:v:v:v:_v:v:_v:v:_v:v:v:v:v: v:v:v:v:v:v:v:v:$If$IfFfT $$Ifa$$IfN
[
\
@A-.1OPƼвƨƞ|vpvpvgvavg
hfCJh
'hCJ
hZCJ
hCJh
'h5{CJ
h5{CJh
'hfCJh
'hf5CJh
'h{e5CJh
'h1w5CJh
'h3G5CJh
'h8~5CJh
'hN5CJh
'hE_5CJh
'hVm5CJ
hVm5CJ
hN5CJ jh
'hN5CJ"O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
A./01Pv:v:v:v:v:v:v:v:v:v:v:v:e
v:e
v:e
v:v:v:v:v:v:Ff $Ifgd $IfgdU$If
!"#$%'+;=>@IJ
ĺĩ읣čuh
'h9CJ\
h}/CJ\
h_CJ\
hZCJ\h
'h{CJ
hCJ
h{CJ
h>VCJ\h
'hqLCJ\h
'h[CJ\h
'hZCJ\h
'hqLCJ
hqLCJh
'hQo<CJ
hQo<CJh
'hZCJh
'hZ5CJ*
v:v:v:iv:v:v:v:v:v:v:v:v:v:v:v:v:v:v:v:v:v:v:e
v:Ff\ $IfgdU$If !"#%&'()+<=>ABCDEFe
v:v:v:v:v:v:v:v:v:v:v:
v:v:v:v:v:v:FfFf+
$IfFGHIJ
v:v:v:e
v:
e
v:e
v:v:v:v:V*v:v:v:E
v:v:v:FfFfy $IfgdD$If
G
ſѯ}tj`VOI
huCJ
h5CJh
'h5CJh
'hZCJ\h<hZCJ\h$hZCJ
h$CJh
'h$CJ\h
'htCJ\h
'htCJ\
h$CJ\
htCJ\
h
CJ\h0'h0'CJ
h0'CJ
htCJ
h}/CJh
'hZ5CJh
'hZCJ
h[CJ\h
'h[CJ\h[hZCJ\
v:v:v:e
v:e
v:v:v:v:v:v:v:v:v:FfF $$Ifa$Ff $Ifgd$ $IfgdRT $IfgdXa$If !!"!#!!!!!!!!!!!v:v:v:v:v:e
v:e
v:e
v:e
v:v:v:v:v:v:v:v:v:v:9Ff%# $IfgdRT $Ifgdcz$If0 !!!!!!!!!!!"" """""""""Ľسzpzhdhdhdhdzh#jh#Uh
'hl5CJh
'hN5CJh
'hCJ\h
'huCJ\
huCJ\huhCJ\huhibCJ\h
'h=}CJ\
hCJ\h
'h=SCJ\hczh=}CJ\
h=}CJ\
huCJ\
hczCJ\h
'h5CJh$h$CJ !!!!!!!!"
""
""""""""v:v:v:!>v:>v:>v:Ff& $IfgdRT$If $$Ifa$1&P 0:pA .!"#8$8%77$$If!vh55f5X55y #v#vf#vX#v#vy :Vl40O+55f5X55y 4af4j$$If!vh555555y5`55 5
5
y #v#v#v#v#v#vy#v`#v#v #v
#v
y :Vl4g0O+5y 55555y5`55 5
5
y 4af4@kd$$Ifl4gr7 }?$)-2[< y y`y 0O,,,,4
laf4}$$If!v h555555y5=55 y #v#v#v#v#v#vy#v=#v#v y :Vl40O++++++++555555y5=55 y /
/ 4af4kd$$Ifl4 r7 }?-2[<``````y=``y 0O$$$$4
laf4O$$If!vh555555y555 5
5
y #v#v#v#v#v#vy#v #v
#v
y :Vl40O+++++++ +
5y 5 5 / 4af4@kd$$Ifl4r7 }?w$6)-2[< y y y y y y 0O,,,,4
laf4$$If!v h555555y5=55 y #v#v#v#v#v#vy#v=#v#v y :Vl40O++++++++555555y5=55 y /
// 4af4kd$$Ifl4 r7 }?-2[<``````y=``y 0O$$$$4
laf4$$If!vh555555y5`55 5
5
y #v#v#v#v#v#vy#v`#v#v #v
#v
y :Vl40O+++++++ +
5y 5`55 5 /
// 4af4@kd!$$Ifl4r7 }?$)-2[< y y y y y y ` 0O,,,,4
laf4$$If!v h555555y5=55 y #v#v#v#v#v#vy#v=#v#v y :Vl4D0O++++++++555555y5=55 y /
// 4af4kd$$Ifl4D r7 }?-2[<``````y=``y 0O$$$$4
laf4$$If!vh555555y5`55 5
5
y #v#v#v#v#v#vy#v`#v#v #v
#v
y :Vl40O+++++++ +
5y 5`55 5 /
// 4af4@kdo$$Ifl4r7 }?$)-2[< y y y y y y ` 0O,,,,4
laf4$$If!v h555555y5=55 y #v#v#v#v#v#vy#v=#v#v y :Vl40O++++++++555555y5=55 y /
// 4af4kd:$$Ifl4 r7 }?-2[<``````y=``y 0O$$$$4
laf4$$If!vh555555y5`55 5
5
y #v#v#v#v#v#vy#v`#v#v #v
#v
y :Vl40O+++++++ +
5y 5`55 5 /
// 4af4@kd$$Ifl4r7 }?$)-2[< y y y y y y ` 0O,,,,4
laf4$$If!vh555555y5=55 y 5
y 5
y #v#v#v#v#v#vy#v=#v#vy :Vl40O++++++++555555y5=55y /
// 4af4@kd!$$Ifl4r7 }?-2[@> Heading 2$$@&a$5<@< Heading 3$@&5CJB@B Heading 4$$@&a$5CJDADDefault Paragraph FontVi@VTable Normal :V44
la(k(No List2B2 Body TextCJ44Header
9r 4 4Footer
9r @Y"@Document Map-D OJQJH2HuBalloon TextCJOJQJ^JaJjCj^=l
Table Grid7:V06UQ6K Hyperlink>*B*phJ!^s!^s!^s
K\x()Cvw 5GjkuvxOPQRSTUVWXYZ[\A./01P
! " # % & ' ( ) + < = > A
B
C
D
E
F
G
H
I
J
"#
0000000000x000x0000000x0 00 0 0 0 0 0 0 00 00 0 0 00 000 000 000 00 00 0 000000 00 000 000 000 000 000 00 000 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0000 000 000 000 000 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000 00 00 00 00 00 000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0000 0 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00x\~00ce@XXH=\~00
0 J
" #C
5O
F!"!"$"8@0(
B
S ?Ub3LdVb3wWb3xXb3LxYb3xUnYr9*urn:schemas-microsoft-com:office:smarttagsplace&1ADlu#
!
"%
33333N\-1s
Jp4+(r8]
0vH,`1x
1hE]KGj=sE
j=$%Wv'w,7d`!n-<2 06|fZ<0TCE}\=SX$|\MCf^>f0^{_"&Aoc:E%k8]E/mj:
nH(OwtQ.MPq)yYmzBc,b{
y{Q~0M@CC&C\DEbEZF!GqH:RM;!NO=S_ySRT! V>VC[^
_E__/_)DaXaibcRc*ha
i0j4(l^=l!m1mVmIo;rCrvuwK\yzcz{5{}=}8~Z"$1LDZaXwBcO<85Q<{(J.cj`mt)o'yuuURMxi49zdU9FIl"ur>?'M,>!<}iLmOC]_Ai%57T=sGzH&3Gprc={0'\>N&{e>+[}/&n<N7KG
'IO.$514K%yK$t
2#<C[5GjuORUX[.0 ! " # % & ' ( = A
C
E
G
I
@@@UnknownGz Times New Roman5Symbol3&z Arial5&zaTahoma?5 z Courier New;Wingdings"1hFFJ&
/&
/"4d3QHX?N"Weekly Planning Sheet for NumeracySec1Shamim
Oh+'0
4@L
Xdlt|#Weekly Planning Sheet for NumeracyreekSec1y Pec1NormalPShamimP2amMicrosoft Word 10.0@@@@(
]@(
]&՜.+,00
px
Ryelands Primary School/
#Weekly Planning Sheet for NumeracyTitle
!"#$%'()*+,-./0123456789:<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F
]Data
&2)1Table;(WordDocument3JSummaryInformation(DocumentSummaryInformation8CompObjj
FMicrosoft Word Document
MSWordDocWord.Document.89q